Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 39.323
1.
J Neurosci Res ; 102(4): e25334, 2024 Apr.
Article En | MEDLINE | ID: mdl-38656648

Iron deficiency (ID) has been shown to affect central nervous system (CNS) development and induce hypomyelination. Previous work from our laboratory in a gestational ID model showed that both oligodendrocyte (OLG) and astrocyte (AST) maturation was impaired. To explore the contribution of AST iron to the myelination process, we generated an in vitro ID model by silencing divalent metal transporter 1 (DMT1) in AST (siDMT1 AST) or treating AST with Fe3+ chelator deferoxamine (DFX; DFX AST). siDMT1 AST showed no changes in proliferation but remained immature. Co-cultures of oligodendrocyte precursors cells (OPC) with siDMT1 AST and OPC cultures incubated with siDMT1 AST-conditioned media (ACM) rendered a reduction in OPC maturation. These findings correlated with a decrease in the expression of AST-secreted factors IGF-1, NRG-1, and LIF, known to promote OPC differentiation. siDMT1 AST also displayed increased mitochondrial number and reduced mitochondrial size as compared to control cells. DFX AST also remained immature and DFX AST-conditioned media also hampered OPC maturation in culture, in keeping with a decrease in the expression of AST-secreted growth factors IGF-1, NRG-1, LIF, and CNTF. DFX AST mitochondrial morphology and number showed results similar to those observed in siDMT1 AST. In sum, our results show that ID, induced through two different methods, impacts AST maturation and mitochondrial functioning, which in turn hampers OPC differentiation.


Astrocytes , Cell Differentiation , Iron Deficiencies , Oligodendroglia , Astrocytes/metabolism , Astrocytes/drug effects , Oligodendroglia/metabolism , Oligodendroglia/drug effects , Animals , Cell Differentiation/drug effects , Cell Differentiation/physiology , Cells, Cultured , Cation Transport Proteins/metabolism , Coculture Techniques , Culture Media, Conditioned/pharmacology , Rats , Oligodendrocyte Precursor Cells/drug effects , Oligodendrocyte Precursor Cells/metabolism , Deferoxamine/pharmacology , Cell Proliferation/drug effects , Cell Proliferation/physiology , Iron/metabolism
2.
Respir Res ; 25(1): 180, 2024 Apr 25.
Article En | MEDLINE | ID: mdl-38664797

BACKGROUND: Pulmonary ionocytes have been identified in the airway epithelium as a small population of ion transporting cells expressing high levels of CFTR (cystic fibrosis transmembrane conductance regulator), the gene mutated in cystic fibrosis. By providing an infinite source of airway epithelial cells (AECs), the use of human induced pluripotent stem cells (hiPSCs) could overcome some challenges of studying ionocytes. However, the production of AEC epithelia containing ionocytes from hiPSCs has proven difficult. Here, we present a platform to produce hiPSC-derived AECs (hiPSC-AECs) including ionocytes and investigate their role in the airway epithelium. METHODS: hiPSCs were differentiated into lung progenitors, which were expanded as 3D organoids and matured by air-liquid interface culture as polarised hiPSC-AEC epithelia. Using CRISPR/Cas9 technology, we generated a hiPSCs knockout (KO) for FOXI1, a transcription factor that is essential for ionocyte specification. Differences between FOXI1 KO hiPSC-AECs and their wild-type (WT) isogenic controls were investigated by assessing gene and protein expression, epithelial composition, cilia coverage and motility, pH and transepithelial barrier properties. RESULTS: Mature hiPSC-AEC epithelia contained basal cells, secretory cells, ciliated cells with motile cilia, pulmonary neuroendocrine cells (PNECs) and ionocytes. There was no difference between FOXI1 WT and KO hiPSCs in terms of their capacity to differentiate into airway progenitors. However, FOXI1 KO led to mature hiPSC-AEC epithelia without ionocytes with reduced capacity to produce ciliated cells. CONCLUSION: Our results suggest that ionocytes could have role beyond transepithelial ion transport by regulating epithelial properties and homeostasis in the airway epithelium.


Induced Pluripotent Stem Cells , Respiratory Mucosa , Humans , Induced Pluripotent Stem Cells/metabolism , Respiratory Mucosa/metabolism , Respiratory Mucosa/cytology , Cell Differentiation/physiology , Cells, Cultured , Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Epithelial Cells/metabolism , Organoids/metabolism
3.
Methods Mol Biol ; 2782: 167-173, 2024.
Article En | MEDLINE | ID: mdl-38622401

Microglia and oligodendrocyte precursor cells (OPCs) are critical glia subsets in the central nervous system (CNS) and are actively engaged in a body of diseases, such as stroke, Alzheimer's disease, multiple sclerosis, etc. Microglia and OPC serve as compelling tools for the study of CNS diseases as well as the repair and damage of myelin sheath in vitro. In this protocol, we summarized a method which is capable of using the same batch of new-born mice to isolate and culture microglia and OPCs. It integrates the characteristics of practicality, convenience, and efficiency, providing a convenient, easy, and reliable technique for research.


Microglia , Oligodendrocyte Precursor Cells , Mice , Animals , Cell Differentiation/physiology , Myelin Sheath , Central Nervous System , Oligodendroglia
4.
Biotechnol J ; 19(4): e2300714, 2024 Apr.
Article En | MEDLINE | ID: mdl-38622793

Natural bone tissue features a complex mechanical environment, with cells responding to diverse mechanical stimuli, including fluid shear stress (FSS) and hydrostatic pressure (HP). However, current in vitro experiments commonly employ a singular mechanical stimulus to simulate the mechanical environment in vivo. The understanding of the combined effects and mechanisms of multiple mechanical stimuli remains limited. Hence, this study constructed a mechanical stimulation device capable of simultaneously applying FSS and HP to cells. This study investigated the impact of FSS and HP on the osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) and examined the distinctions and interactions between the two mechanisms. The results demonstrated that both FSS and HP individually enhanced the osteogenic differentiation of BMSCs, with a more pronounced effect observed through their combined application. BMSCs responded to external FSS and HP stimulation through the integrin-cytoskeleton and Piezo1 ion channel respectively. This led to the activation of downstream biochemical signals, resulting in the dephosphorylation and nuclear translocation of the intracellular transcription factors Yes Associated Protein 1 (YAP1) and nuclear factor of activated T cells 2 (NFAT2). Activated YAP1 could bind to NFAT2 to enhance transcriptional activity, thereby promoting osteogenic differentiation of BMSCs more effectively. This study highlights the significance of composite mechanical stimulation in BMSCs' osteogenic differentiation, offering guidance for establishing a complex mechanical environment for in vitro functional bone tissue construction.


Mesenchymal Stem Cells , Osteogenesis , Osteogenesis/physiology , Hydrostatic Pressure , Cell Differentiation/physiology , Transcription Factors/metabolism , Cells, Cultured , Bone Marrow Cells
5.
Cell Reprogram ; 26(2): 46-56, 2024 Apr.
Article En | MEDLINE | ID: mdl-38635924

Culturing of mouse and human embryonic stem cells (ESCs) in vitro was a major breakthrough in the field of stem cell biology. These models gained popularity very soon mainly due to their pluripotency. Evidently, the ESCs of mouse and human origin share typical phenotypic responses due to their pluripotent nature, such as self-renewal capacity and potency. The conserved network of core transcription factors regulates these responses. However, significantly different signaling pathways and upstream transcriptional networks regulate expression and activity of these core pluripotency factors in ESCs of both the species. In fact, ample evidence shows that a pathway, which maintains pluripotency in mouse ESCs, promotes differentiation in human ESCs. In this review, we discuss the role of canonical signaling pathways implicated in regulation of pluripotency and differentiation particularly in mouse and human ESCs. We believe that understanding these distinct and at times-opposite mechanisms-is critical for the progress in the field of stem cell biology and regenerative medicine.


Human Embryonic Stem Cells , Humans , Embryonic Stem Cells , Cell Differentiation/physiology , Mouse Embryonic Stem Cells/metabolism , Signal Transduction
6.
Skelet Muscle ; 14(1): 6, 2024 Apr 01.
Article En | MEDLINE | ID: mdl-38561845

BACKGROUND: The regenerative and adaptive capacity of skeletal muscles reduces with age, leading to severe disability and frailty in the elderly. Therefore, development of effective therapeutic interventions for muscle wasting is important both medically and socioeconomically. In the present study, we aimed to elucidate the potential contribution of fibro-adipogenic progenitors (FAPs), which are mesenchymal stem cells in skeletal muscles, to immobilization-induced muscle atrophy. METHODS: Young (2-3 months), adult (12-14 months), and aged (20-22 months) mice were used for analysis. Muscle atrophy was induced by immobilizing the hind limbs with a steel wire. FAPs were isolated from the hind limbs on days 0, 3, and 14 after immobilization for transcriptome analysis. The expression of ST2 and IL-33 in FAPs was evaluated by flow cytometry and immunostaining, respectively. To examine the role of IL-33-ST2 signaling in vivo, we intraperitoneally administered recombinant IL-33 or soluble ST2 (sST2) twice a week throughout the 2-week immobilization period. After 2-week immobilization, the tibialis anterior muscles were harvested and the cross-sectional area of muscle fibers was evaluated. RESULTS: The number of FAPs increased with the progression of muscle atrophy after immobilization in all age-groups. Transcriptome analysis of FAPs collected before and after immobilization revealed that Il33 and Il1rl1 transcripts, which encode the IL-33 receptor ST2, were transiently induced in young mice and, to a lesser extent, in aged mice. The number of FAPs positive for ST2 increased after immobilization in young mice. The number of ST2-positive FAPs also increased after immobilization in aged mice, but the difference from the baseline was not statistically significant. Immunostaining for IL-33 in the muscle sections revealed a significant increase in the number of FAPs expressing IL-33 after immobilization. Administration of recombinant IL-33 suppressed immobilization-induced muscle atrophy in aged mice but not in young mice. CONCLUSIONS: Our data reveal a previously unknown protective role of IL-33-ST2 signaling against immobilization-induced muscle atrophy in FAPs and suggest that IL-33-ST2 signaling is a potential new therapeutic target for alleviating disuse muscle atrophy, particularly in older adults.


Interleukin-1 Receptor-Like 1 Protein , Interleukin-33 , Humans , Aged , Mice , Animals , Interleukin-33/metabolism , Interleukin-1 Receptor-Like 1 Protein/genetics , Interleukin-1 Receptor-Like 1 Protein/metabolism , Adipogenesis , Muscle, Skeletal/metabolism , Muscular Atrophy/etiology , Muscular Atrophy/prevention & control , Muscular Atrophy/metabolism , Cell Differentiation/physiology
7.
Rinsho Ketsueki ; 65(3): 183-187, 2024.
Article Ja | MEDLINE | ID: mdl-38569864

The transcription factor GATA-1 is essential for erythroid differentiation. Recently, FAM210B, which encodes a mitochondrial inner membrane protein, has been identified as a novel target of GATA-1. To clarify the role of FAM210B, we depleted endogenous FAM210B in human iPS-derived erythroid progenitor (HiDEP-1) cells, and found that erythroid differentiation was more pronounced in the FAM210B depleted cells. Comprehensive metabolite analysis revealed a decline in mitochondrial function accompanied by increased lactate production, indicative of anaerobic glycolysis. Mass spectrometry revealed that FAM210B could interact with multiple subunits of mitochondrial ATP synthases, such as subunit alpha (ATP5A) and beta (ATP5B). Our results suggested that FAM210B contributes prominently to erythroid differentiation by regulating mitochondrial energy metabolism. This review will discuss the potential association between mitochondrial metabolism and erythropoiesis.


GATA1 Transcription Factor , Mitochondria , Humans , Mitochondria/metabolism , Erythroid Precursor Cells/metabolism , Cell Differentiation/physiology , Erythropoiesis/physiology
8.
PLoS One ; 19(4): e0300623, 2024.
Article En | MEDLINE | ID: mdl-38564577

Regulation of protein synthesis is a key factor in hematopoietic stem cell maintenance and differentiation. Rio-kinase 2 (RIOK2) is a ribosome biogenesis factor that has recently been described an important regulator of human blood cell development. Additionally, we have previously identified RIOK2 as a regulator of protein synthesis and a potential target for the treatment of acute myeloid leukemia (AML). However, its functional relevance in several organ systems, including normal hematopoiesis, is not well understood. Here, we investigate the consequences of RIOK2 loss on normal hematopoiesis using two different conditional knockout mouse models. Using competitive and non-competitive bone marrow transplantations, we demonstrate that RIOK2 is essential for the differentiation of hematopoietic stem and progenitor cells (HSPCs) as well as for the maintenance of fully differentiated blood cells in vivo as well as in vitro. Loss of RIOK2 leads to rapid death in full-body knockout mice as well as mice with RIOK2 loss specific to the hematopoietic system. Taken together, our results indicate that regulation of protein synthesis and ribosome biogenesis by RIOK2 is essential for the function of the hematopoietic system.


Hematopoietic Stem Cells , Leukemia, Myeloid, Acute , Animals , Humans , Mice , Bone Marrow Transplantation , Cell Differentiation/physiology , Hematopoiesis/genetics , Hematopoietic Stem Cells/metabolism , Leukemia, Myeloid, Acute/metabolism , Mice, Knockout
9.
Arq Bras Oftalmol ; 87(2): e2022, 2024.
Article En | MEDLINE | ID: mdl-38655938

PURPOSES: To determine the best protocol in obtaining the higher yield of conditioned culture medium to be used for the bone marrow mesenchymal stem cell differentiation into corneal epithelial cells, five techniques for the primary culture of human corneal epithelial cells were evaluated. METHODS: The studied culture techniques of corneal epithelial cells were: explants in culture flasks with and without hydrophilic surface treatment, on amniotic membrane, with enzymatic digestion, and by corneal scraping. The conditioned culture medium collected from these cultures was used to differentiate human bone marrow mesenchymal stem cells into corneal epithelial cells, which were characterized using flow cytometry with pan-cytokeratin and the corneal-specific markers, cytokeratin 3 and cytokeratin 12. RESULTS: The culture technique using flasks with hydrophilic surface treatment resulted in the highest yield of conditioned culture medium. Flasks without surface treatment resulted to a very low success rate. Enzymatic digestion and corneal scraping showed contamination with corneal fibroblasts. The culture on amniotic membranes only allowed the collection of culture medium during the 1st cell confluence. The effectiveness of cell differentiation was confirmed by cytometry analysis using the collected conditioned culture medium, as demonstrated by the expressions of cytokeratin 3 (95.3%), cytokeratin 12 (93.4%), and pan-cytokeratin (95.3%). CONCLUSION: The culture of corneal epithelial cell explants in flasks with hydrophilic surface treatment is the best technique for collecting a higher yield of conditioned culture medium to be used to differentiate mesenchymal stem cells.


Cell Culture Techniques , Cell Differentiation , Epithelium, Corneal , Flow Cytometry , Mesenchymal Stem Cells , Humans , Culture Media, Conditioned , Epithelium, Corneal/cytology , Cell Differentiation/physiology , Flow Cytometry/methods , Mesenchymal Stem Cells/cytology , Cell Culture Techniques/methods , Amnion/cytology , Cells, Cultured , Keratin-3/metabolism , Keratin-3/analysis , Keratin-12/metabolism , Reproducibility of Results
10.
Biochem Biophys Res Commun ; 710: 149861, 2024 May 28.
Article En | MEDLINE | ID: mdl-38581949

During early development, the enteric nervous system forms from the migration of enteric neural crest cells (ENCCs) from the foregut to the hindgut, where they undergo proliferation and differentiation facilitated by interactions with enteric mesenchymal cells (EMCs). This study investigates the impact on ENCC migration of EMC-ENCC communication mediated by GFRA1b expressed in EMCs. GFRA1-expressing cells in day 11-12 (E11-12) mouse embryos differentiated into smooth muscle cells from E12 onwards. Observations at E12-13.5 revealed high levels of GFRA1 expression on the anti-mesenteric side of the hindgut, correlating with enhanced ENCC migration. This indicates that GFRA1 in EMCs plays a role in ENCC migration during development. Examining GFRA1 isoforms, we found high levels of GFRA1b, which lacks amino acids 140-144, in EMCs. To assess the impact of GFRA1 isoforms on EMC-ENCC communication, we conducted neurosphere drop assays. This revealed that GFRA1b-expressing cells promoted GDNF-dependent extension and increased neurite density in ENCC neurospheres. Co-culture of ENCC mimetic cells expressing RET and GFRA1a with EMC mimetic cells expressing GFRA1a, GFRA1b, or vector alone showed that only GFRA1b-expressing co-cultured cells sustained RET phosphorylation in ENCC-mimetic cells for over 120 min upon GDNF stimulation. Our study provides evidence that GFRA1b-mediated cell-to-cell communication plays a critical role in ENCC motility in enteric nervous system development. These findings contribute to understanding the cellular interactions and signaling mechanisms that underlie enteric nervous system formation and highlight potential therapeutic targets for gastrointestinal motility disorders.


Enteric Nervous System , Neural Crest , Animals , Mice , Cell Differentiation/physiology , Cell Movement/physiology , Enteric Nervous System/physiology , Glial Cell Line-Derived Neurotrophic Factor/metabolism , Neural Crest/metabolism , Protein Isoforms/metabolism
11.
Elife ; 132024 Apr 09.
Article En | MEDLINE | ID: mdl-38591777

Bone remodeling is a complex process involving the coordinated actions of osteoblasts and osteoclasts to maintain bone homeostasis. While the influence of osteoblasts on osteoclast differentiation is well established, the reciprocal regulation of osteoblasts by osteoclasts has long remained enigmatic. In the past few years, a fascinating new role for osteoclasts has been unveiled in promoting bone formation and facilitating osteoblast migration to the remodeling sites through a number of different mechanisms, including the release of factors from the bone matrix following bone resorption and direct cell-cell interactions. Additionally, considerable evidence has shown that osteoclasts can secrete coupling factors known as clastokines, emphasizing the crucial role of these cells in maintaining bone homeostasis. Due to their osteoprotective function, clastokines hold great promise as potential therapeutic targets for bone diseases. However, despite long-standing work to uncover new clastokines and their effect in vivo, more substantial efforts are still required to decipher the mechanisms and pathways behind their activity in order to translate them into therapies. This comprehensive review provides insights into our evolving understanding of the osteoclast function, highlights the significance of clastokines in bone remodeling, and explores their potential as treatments for bone diseases suggesting future directions for the field.


Bone Resorption , Osteoclasts , Humans , Osteoclasts/metabolism , Osteoblasts/metabolism , Bone Resorption/metabolism , Bone Remodeling , Osteogenesis/physiology , Cell Differentiation/physiology
12.
Genesis ; 62(2): e23592, 2024 Apr.
Article En | MEDLINE | ID: mdl-38587195

Mesenchymal stem cells (MSCs) derived from fetal membranes (FMs) have the potential to exhibit immunosuppression, improve blood flow, and increase capillary density during transplantation. In the field of medicine, opening up new avenues for disease treatment. Chicken embryo chorioallantoic membrane (CAM), as an important component of avian species FM structure, has become a stable tissue engineering material in vivo angiogenesis, drug delivery, and toxicology studies. Although it has been confirmed that chorionic mesenchymal stem cells (Ch-MSCs) can be isolated from the outer chorionic layer of FM, little is known about the biological characteristics of MSCs derived from chorionic mesodermal matrix of chicken embryos. Therefore, we evaluated the characteristics of MSCs isolated from chorionic tissues of chicken embryos, including cell proliferation ability, stem cell surface antigen, genetic stability, and in vitro differentiation potential. Ch-MSCs exhibited a broad spindle shaped appearance and could stably maintain diploid karyotype proliferation to passage 15 in vitro. Spindle cells were positive for multifunctional markers of MSCs (CD29, CD44, CD73, CD90, CD105, CD166, OCT4, and NANOG), while hematopoietic cell surface marker CD34, panleukocyte marker CD45, and epithelial cell marker CK19 were negative. In addition, chicken Ch-MSC was induced to differentiate into four types of mesodermal cells in vitro, including osteoblasts, chondrocytes, adipocytes, and myoblasts. Therefore, the differentiation potential of chicken Ch-MSC in vitro may have great potential in tissue engineering. In conclusion, chicken Ch-MSCs may be an excellent model cell for stem cell regenerative medicine and chorionic tissue engineering.


Chickens , Mesenchymal Stem Cells , Animals , Chick Embryo , Chorioallantoic Membrane , Cell Differentiation/physiology , Cells, Cultured
13.
J Mol Neurosci ; 74(2): 40, 2024 Apr 09.
Article En | MEDLINE | ID: mdl-38594388

Astrocytes, the most prevalent cells in the central nervous system (CNS), can be transformed into neurons and oligodendrocyte progenitor cells (OPCs) using specific transcription factors and some chemicals. In this study, we present a cocktail of small molecules that target different signaling pathways to promote astrocyte conversion to OPCs. Astrocytes were transferred to an OPC medium and exposed for five days to a small molecule cocktail containing CHIR99021, Forskolin, Repsox, LDN, VPA and Thiazovivin before being preserved in the OPC medium for an additional 10 days. Once reaching the OPC morphology, induced cells underwent immunocytofluorescence evaluation for OPC markers while checked for lacking the astrocyte markers. To test the in vivo differentiation capabilities, induced OPCs were transplanted into demyelinated mice brains treated with cuprizone over 12 weeks. Two distinct lines of astrocytes demonstrated the potential of conversion to OPCs using this small molecule cocktail as verified by morphological changes and the expression of PDGFR and O4 markers as well as the terminal differentiation to oligodendrocytes expressing MBP. Following transplantation into demyelinated mice brains, induced OPCs effectively differentiated into mature oligodendrocytes. The generation of OPCs from astrocytes via a small molecule cocktail may provide a new avenue for producing required progenitors necessary for myelin repair in diseases characterized by the loss of myelin such as multiple sclerosis.


Multiple Sclerosis , Oligodendrocyte Precursor Cells , Mice , Animals , Multiple Sclerosis/therapy , Multiple Sclerosis/metabolism , Astrocytes/metabolism , Oligodendrocyte Precursor Cells/metabolism , Myelin Sheath/metabolism , Oligodendroglia/metabolism , Cell Differentiation/physiology , Disease Models, Animal , Cell Line
14.
Stem Cell Res Ther ; 15(1): 99, 2024 Apr 05.
Article En | MEDLINE | ID: mdl-38581069

BACKGROUND: Human induced pluripotent stem cell (iPSC)-derived peripheral sensory neurons present a valuable tool to model human diseases and are a source for applications in drug discovery and regenerative medicine. Clinically, peripheral sensory neuropathies can result in maladies ranging from a complete loss of pain to severe painful neuropathic disorders. Sensory neurons are located in the dorsal root ganglion and are comprised of functionally diverse neuronal types. Low efficiency, reproducibility concerns, variations arising due to genetic factors and time needed to generate functionally mature neuronal populations from iPSCs remain key challenges to study human nociception in vitro. Here, we report a detailed functional characterization of iPSC-derived sensory neurons with an accelerated differentiation protocol ("Anatomic" protocol) compared to the most commonly used small molecule approach ("Chambers" protocol). Anatomic's commercially available RealDRG™ were further characterized for both functional and expression phenotyping of key nociceptor markers. METHODS: Multiple iPSC clones derived from different reprogramming methods, genetics, age, and somatic cell sources were used to generate sensory neurons. Manual patch clamp was used to functionally characterize both control and patient-derived neurons. High throughput techniques were further used to demonstrate that RealDRGs™ derived from the Anatomic protocol are amenable to high throughput technologies for disease modelling. RESULTS: The Anatomic protocol rendered a purer culture without the use of mitomycin C to suppress non-neuronal outgrowth, while Chambers differentiations yielded a mix of cell types. Chambers protocol results in predominantly tonic firing when compared to Anatomic protocol. Patient-derived nociceptors displayed higher frequency firing compared to control subject with both, Chambers and Anatomic differentiation approaches, underlining their potential use for clinical phenotyping as a disease-in-a-dish model. RealDRG™ sensory neurons show heterogeneity of nociceptive markers indicating that the cells may be useful as a humanized model system for translational studies. CONCLUSIONS: We validated the efficiency of two differentiation protocols and their potential application for functional assessment and thus understanding the disease mechanisms from patients suffering from pain disorders. We propose that both differentiation methods can be further exploited for understanding mechanisms and development of novel treatments in pain disorders.


Induced Pluripotent Stem Cells , Humans , Induced Pluripotent Stem Cells/metabolism , Reproducibility of Results , Sensory Receptor Cells/metabolism , Pain/metabolism , Cell Differentiation/physiology
15.
Am J Physiol Cell Physiol ; 326(4): C1193-C1202, 2024 Apr 01.
Article En | MEDLINE | ID: mdl-38581669

Satellite cells (SCs) and fibroadipogenic progenitors (FAPs) are progenitor populations found in muscle that form new myofibers postinjury. Muscle development, regeneration, and tissue-engineering experiments require robust progenitor populations, yet their isolation and expansion are difficult given their scarcity in muscle, limited muscle biopsy sizes in humans, and lack of methodological detail in the literature. Here, we investigated whether a dispase and collagenase type 1 and 2 cocktail could allow dual isolation of SCs and FAPs, enabling significantly increased yield from human skeletal muscle. Postdissociation, we found that single cells could be sorted into CD56 + CD31-CD45- (SC) and CD56-CD31-CD45- (FAP) cell populations, expanded in culture, and characterized for lineage-specific marker expression and differentiation capacity; we obtained ∼10% SCs and ∼40% FAPs, with yields twofold better than what is reported in current literature. SCs were PAX7+ and retained CD56 expression and myogenic fusion potential after multiple passages, expanding up to 1012 cells. Conversely, FAPs expressed CD140a and differentiated into either fibroblasts or adipocytes upon induction. This study demonstrates robust isolation of both SCs and FAPs from the same muscle sample with SC recovery more than two times higher than previously reported, which could enable translational studies for muscle injuries.NEW & NOTEWORTHY We demonstrated that a dispase/collagenase cocktail allows for simultaneous isolation of SCs and FAPs with 2× higher SC yield compared with other studies. We provide a thorough characterization of SC and FAP in vitro expansion that other studies have not reported. Following our dissociation, SCs and FAPs were able to expand by up to 1012 cells before reaching senescence and maintained differentiation capacity in vitro demonstrating their efficacy for clinical translation for muscle injury.


Endopeptidases , Muscle, Skeletal , Satellite Cells, Skeletal Muscle , Humans , Muscle, Skeletal/metabolism , Cell Differentiation/physiology , Satellite Cells, Skeletal Muscle/metabolism , Fibroblasts/metabolism
16.
Shanghai Kou Qiang Yi Xue ; 33(1): 22-29, 2024 Feb.
Article Zh | MEDLINE | ID: mdl-38583020

PURPOSE: To investigate the role and mechanism of connexin 43(Cx43)in odontoblast differentiation of human dental pulp cells (hDPCs) induced by lipopolysaccharide (LPS). METHODS: The maxillary first molar injury model of SD rats was established. The expression pattern of Cx43 in dental pulp repair after injury was detected by immunofluorescence(IF) staining. hDPCs was respectively stimulated with 0, 1, 10, 100 and 1 000 ng/mL LPS for 6 h to screen the optimal concentration, and then the expression of Cx43 was inhibited and overexpressed in hDPCs. Quantitative real-time PCR(qRT-PCR) and Western blot(WB) were used to detect the expression of Cx43 and dentin sialophosphoprotein (DSPP), dental matrix protein-1 (DMP-1), osterix (Osx) and extracellular signal-regulated kinase (ERK) activity. Furthermore, hDPCs were treated with specific Cx43 channel inhibitors to investigate the effect of Cx43-mediated channel activity in odontoblast differentiation of hDPCs, and to explore the role and mechanism of Cx43 in regulating odontoblast differentiation of hDPCs induced by LPS. Statistical analysis was performed with SPSS 26.0 software package. RESULTS: IF results showed that Cx43 was mainly expressed in the odontoblast layer in healthy dental pulp tissues. At 3-24 h after tooth injury, the expression of Cx43 decreased and then gradually increased to the normal level; from 3 days to 2 weeks after injury, the expression of Cx43 tended to be down-regulated which was in the odontoblast layer and pulp proper. The expression of DSPP mRNA was significantly up-regulated in the hDPCs stimulated with 10 ng/mL LPS for 6 h(P<0.01). Inhibition of Cx43 significantly up-regulated the expression of DSPP, DMP-1 and Osx mRNA induced by LPS in hDPCs(P<0.05), while overexpression of Cx43 obviously inhibited the expression of factors related to LPS-induced odontoblast differentiation(P<0.01) and the fluorescence intensity of DSPP. 10 ng/mL LPS activated ERK signal in hDPCs, and overexpression of Cx43 significantly attenuated the activity of ERK signal induced by LPS(P<0.01). Inhibition of Cx43-mediated hemichannel (HC) promoted mRNA expression of factors related to odontoblast differentiation in hDPCs and the activity of ERK signal induced by LPS(P<0.05), while blocking Cx43-mediated gap junction channel (GJC) inhibited odontoblast differentiation. CONCLUSIONS: Cx43 participates in the regulation of dental pulp repair after injury, and its expression shows a downward trend as a whole. Inhibition of Cx43 or blocking of HC promotes LPS-induced ERK signal activity and odontoblast differentiation of hDPCs.


Connexin 43 , Lipopolysaccharides , Animals , Humans , Rats , Cell Differentiation/physiology , Cells, Cultured , Connexin 43/metabolism , Dental Pulp/metabolism , Extracellular Matrix Proteins/metabolism , Lipopolysaccharides/pharmacology , Lipopolysaccharides/metabolism , Odontoblasts/metabolism , Rats, Sprague-Dawley , RNA, Messenger/metabolism
17.
Skelet Muscle ; 14(1): 5, 2024 Mar 07.
Article En | MEDLINE | ID: mdl-38454511

BACKGROUND: Neurovascular cells have wide-ranging implications on skeletal muscle biology regulating myogenesis, maturation, and regeneration. Although several in vitro studies have investigated how motor neurons and endothelial cells interact with skeletal myocytes independently, there is limited knowledge about the combined effect of neural and vascular cells on muscle maturation and development. METHODS: Here, we report a triculture system comprising human-induced pluripotent stem cell (iPSC)-derived skeletal myocytes, human iPSC-derived motor neurons, and primary human endothelial cells maintained under controlled media conditions. Briefly, iPSCs were differentiated to generate skeletal muscle progenitor cells (SMPCs). These SMPCs were seeded at a density of 5 × 104 cells/well in 12-well plates and allowed to differentiate for 7 days before adding iPSC-derived motor neurons at a concentration of 0.5 × 104 cells/well. The neuromuscular coculture was maintained for another 7 days in coculture media before addition of primary human umbilical vein endothelial cells (HUVEC) also at 0.5 × 104 cells/well. The triculture was maintained for another 7 days in triculture media comprising equal portions of muscle differentiation media, coculture media, and vascular media. Extensive morphological, genetic, and molecular characterization was performed to understand the combined and individual effects of neural and vascular cells on skeletal muscle maturation. RESULTS: We observed that motor neurons independently promoted myofiber fusion, upregulated neuromuscular junction genes, and maintained a molecular niche supportive of muscle maturation. Endothelial cells independently did not support myofiber fusion and downregulated expression of LRP4 but did promote expression of type II specific myosin isoforms. However, neurovascular cells in combination exhibited additive increases in myofiber fusion and length, enhanced production of Agrin, along with upregulation of several key genes like MUSK, RAPSYN, DOK-7, and SLC2A4. Interestingly, more divergent effects were observed in expression of genes like MYH8, MYH1, MYH2, MYH4, and LRP4 and secretion of key molecular factors like amphiregulin and IGFBP-4. CONCLUSIONS: Neurovascular cells when cultured in combination with skeletal myocytes promoted myocyte fusion with concomitant increase in expression of various neuromuscular genes. This triculture system may be used to gain a deeper understanding of the effects of the neurovascular niche on skeletal muscle biology and pathophysiology.


Induced Pluripotent Stem Cells , Humans , Induced Pluripotent Stem Cells/metabolism , Endothelial Cells , Cells, Cultured , Muscle Fibers, Skeletal/metabolism , Motor Neurons , Cell Differentiation/physiology
18.
Physiol Rep ; 12(5): e15971, 2024 Mar.
Article En | MEDLINE | ID: mdl-38467556

Microgravity is one of the most common causes counting for the bone loss. Mesenchymal stem cells (MSCs) contribute greatly to the differentiation and function of bone related cells. The development of novel MSCs biomarkers is critical for implementing effective therapies for microgravity induced bone loss. We aimed to find the new molecules involved in the differentiation and function of MSCs in mouse simulated microgravity model. We found CD226 was preferentially expressed on a subset of MSCs. Simulation of microgravity treatment significantly increased the proportion of CD226+ Lin- CD117- Sca1+ MSCs. The CD226+ MSCs produced higher IL-6, M-CSF, RANKL and lower CD200 expression, and promoted osteoclast differentiation. This study provides pivotal information to understand the role of CD226 in MSCs, and inspires new ideas for prevention of bone loss related diseases.


Mesenchymal Stem Cells , Weightlessness , Animals , Mice , Weightlessness/adverse effects , Mesenchymal Stem Cells/metabolism , Cell Differentiation/physiology , Cells, Cultured , Weightlessness Simulation
19.
Cell Death Dis ; 15(3): 200, 2024 Mar 08.
Article En | MEDLINE | ID: mdl-38459002

During aging, muscle regenerative capacities decline, which is concomitant with the loss of satellite cells that enter in a state of irreversible senescence. However, what mechanisms are involved in myogenic senescence and differentiation are largely unknown. Here, we showed that early-passage or "young" C2C12 myoblasts activated the redox-sensitive p66Shc signaling pathway, exhibited a strong antioxidant protection and a bioenergetic profile relying predominantly on OXPHOS, responses that decrease progressively during differentiation. Furthermore, autophagy was increased in myotubes. Otherwise, late-passage or "senescent" myoblasts led to a highly metabolic profile, relying on both OXPHOS and glycolysis, that may be influenced by the loss of SQSTM1/p62 which tightly regulates the metabolic shift from aerobic glycolysis to OXPHOS. Furthermore, during differentiation of late-passage C2C12 cells, both p66Shc signaling and autophagy were impaired and this coincides with reduced myogenic capacity. Our findings recognized that the lack of p66Shc compromises the proliferation and the onset of the differentiation of C2C12 myoblasts. Moreover, the Atg7 silencing favored myoblasts growth, whereas interfered in the viability of differentiated myotubes. Then, our work demonstrates that the p66Shc signaling pathway, which highly influences cellular metabolic status and oxidative environment, is critical for the myogenic commitment and differentiation of C2C12 cells. Our findings also support that autophagy is essential for the metabolic switch observed during the differentiation of C2C12 myoblasts, confirming how its regulation determines cell fate. The regulatory roles of p66Shc and autophagy mechanisms on myogenesis require future attention as possible tools that could predict and measure the aging-related state of frailty and disability.


Myoblasts , Signal Transduction , Autophagy/genetics , Cell Differentiation/physiology , Cell Line , Muscle Development/genetics , Myoblasts/metabolism , Src Homology 2 Domain-Containing, Transforming Protein 1/genetics , Src Homology 2 Domain-Containing, Transforming Protein 1/metabolism , Animals , Mice
20.
Int J Mol Sci ; 25(5)2024 Mar 03.
Article En | MEDLINE | ID: mdl-38474198

Periodontitis is a bacteria-induced inflammatory disease characterized by the progressive destruction of periodontal supporting tissues. Periodontal ligament stem cells (PDLSCs) are capable of differentiating into osteoblasts, which is an important stem cell source for endogenous periodontal tissue regeneration. Lysine lactylation (Kla) is a novel post-translational modification of proteins that is recently thought to be associated with osteogenic differentiation. Here, we found that lactylation levels are reduced both in the periodontal tissue of rats with periodontitis and lipopolysaccharide (LPS)-stimulated human PDLSCs. Proanthocyanidins were able to promote the osteogenesis of inflamed PDLSCs by restoring lactylation levels. Mechanistically, proanthocyanidins increased lactate production and restored the lactylation levels of PDLSCs, which recovered osteogenesis of inflamed PDLSCs via the Wnt/ß-catenin pathway. These results provide evidence on how epigenetic regulation by pharmacological agents influence the osteogenic phenotype of stem cells and the process of periodontal tissue repair. Our current study highlights the valuable potential of natural product proanthocyanidins in the regenerative engineering of periodontal tissues.


Periodontitis , Proanthocyanidins , Humans , Rats , Animals , Osteogenesis/physiology , Periodontal Ligament , Lipopolysaccharides/metabolism , Lysine/metabolism , Proanthocyanidins/metabolism , Epigenesis, Genetic , Stem Cells/metabolism , Periodontitis/metabolism , Cell Differentiation/physiology , Cells, Cultured
...